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We analyze the reconstruction by Wu and Sprung [Phys. Rev. E 48, 2595 (1993)] of a fractal one-
dimensional potential, the quantum spectrum of which reproduces the first 500 nontrivial zeros of the
Riemann § function. Our construction is based on a spectrum with Gaussian unitary ensemble statistics
as far as the nearest-neighbor spacing distribution is concerned. Our results show that a reliable esti-
mate of the fractal dimension of the potential necessitates a very large number of levels.
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In a previous publication [1], Wu et al. have addressed
the problem of quantum chaos from a novel and interest-
ing angle. The common lore in the domain is that (classi-
cally) nonintegrable Hamiltonians show level repulsions
in their quantum spectrum and the conjecture of Bohigas,
Giannoni, and Schmit [2] has made this statement more
specific, relating the spectral statistics to that of an ap-
propriate ensemble of random matrices. Sprung and col-
laborators have challenged this statement by exhibiting
one-dimensional (1D) Hamiltonians (which by definition
are classically integrable) which show the same level
repulsion as the one expected in the case of quantum
chaos. This last point is intriguing, since any smooth 1D
potential would lead to a spectrum that would locally
look as that of a harmonic oscillator, i.e., exhibiting even-
ly spaced levels. The key word in the preceding remark is
“smooth.” Indeed, the statements concerning the spec-
tral behavior of a given potential are based on a smooth-
ness assumption (that is sometimes only implicitly made).
Wu et al. have shown that if one relinquishes this re-
quirement one has considerable freedom and can obtain
practically any spectral behavior in 1D Hamiltonians.
They have thus shown that Gaussian orthogonal ensem-
ble (GOE)-type statistics for the nearest-neighbor spacing
distribution (NNSD) can be obtained from a 1D
nonsmooth potential provided the curve V(x) is ap-
propriately fractal. In a recent publication, they have ad-
dressed the question of reconstructing the fractal poten-
tial that would have its energy levels at the position of the
zeros of the Riemann ¢ function [3]. They have estimat-
ed the fractal dimension from a reconstruction of the po-
tential from N=100, 300, and 500 levels and obtained the
value D=1.5 for N=500.

In this Comment we examine the problem of the es-
timation of the fractal dimension of the potential from a
finite number N of fitted levels. We show that the conver-
gence of the value of the fractal dimension as a function
of N is very slow. Thus, a realistic estimate necessitates a
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very large number of levels (and correspondingly large
computing time). The all important ingredient of our ap-
proach is the method for the solution of the inverse prob-
lem, namely, the reconstruction of the potential from a
given sequence of energy levels. We have explained this
method in [4] but we summarize it below for the sake of
completeness. It is based on the techniques developed in
relation to integrable nonlinear evolution (soliton) equa-
tions, although this statement has only a historical
significance: the “dressing” transformation we shall in-
troduce in the next paragraph is obviously related to the
quantum inverse problem.

We start with the 1D stationary Schrdodinger equation
for the motion of a particle in a potential ¥ (x) (in units
#/2m =1):

—V'+V(x)V=€e¥ . (1)

When € is the deepest eigenvalue €, in the potential ¥ (x),
then Wy(x) is decreasing exponentially at both +co
without any node in between. If we choose now some
€ <€, then if we consider the solution ¥, of Eq. (1) with
asymptotic behavior exponentially decreasing as x — =+
we find that it diverges exponentially as x — F c without
any node in between. Then from the ¥, we can obtain a
function ¥ diverging at both +c with no nodes in be-
tween simply through a linear combination of the W
with positive coefficients. Inverting W, we obtain a finite
(non-normalized) wave function ®=1/¥ decreasing at
both infinities. Thus ® can be considered as the lowest
eigenfunction of some potential W with eigenvalue €

—O"+W(x)P+ed . (2)

Thus, starting from a given potential ¥ (x) one computes
the diverging solution W associated with some energy €
and through the relation ®=1/¥ one obtains an eigen-
function of a new potential (at precisely energy €). This
is the essence of the dressing transformation and we shall
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show how it can be explicitly obtained. First we intro-

duce the logarithmic derivatives f=—W¥'/¥ and

g =—®' /&= —f. Equations (1) and (2) become
f=f+vix)=e, (3a)
g —g*+WwWix)=e. (3b)

Adding (3a) and (3b), given that g = — f, we obtain
Wi(x)=2e+2f*—V(x). (4)

The dressing transformation (4) is well-known in the
domain of nonlinear evolution equations. In fact, it al-
lows us to construct the multisoliton solutions of the
Korteweg—de Vries (KdV) equation, starting from the
vacuum solution [S5]. The main advantage of this trans-
formation is that the addition of each soliton does not
modify all the previous eigenvalues.

Now let us describe our method of construction of the
potential. First, we give a spectrum €, €,...,€x5_;.
The important point is that the potential will be con-
structed “top down” in such a way as to have exactly N
negative eigenvalues €y, €;,...,€y_; and €y=0. We
start with an initial potential ¥ (x)=0 and solve Eq. (3a)
for f with e=e€y_;. The only free parameter in the Ric-
cati (3a) is f(0) and taking f(0)=0 guarantees that V¥ is
the even solution that has no nodes. Once f is obtained
(numerically) one constructs W(x) from (4). Starting
with this as a new potential one adds a further eigenvalue
€y o, and so on. The choice f(0)=0 has for consequence
that the final ¥ (x) is even. The efficiency of the dressing
transformation for the reconstruction of the potential has
been largely tested in [4]. We should also point out that,
since no parameters’ search is involved in this construc-
tion, the computations involved are most economical.

The great advantage of the method is that it allows a
step by step reconstruction of the potential, although, ad-
mittedly, since this is a top-down construction, the num-
ber of levels must be fixed in advance (unless the statistics
of the states is independent on the energy). The numeri-
cal precision is thus optimal and since the computations
involved are moderate we can easily achieve an improve-
ment by orders of magnitude over the result of Wu and
Sprung as far as the number of levels is concerned.

The main aim of this Comment is not to present an ac-
curate estimate of the fractal potential with a spectrum
corresponding to the zeros of the Riemann § function,
but rather to show that such an estimate is very difficult
to obtain from numerical evaluations. Thus we need not
include the fine details of the spectrum, i.e., use the pre-
cise zeros of the Riemann { function, but may restrict
ourselves to their statistical properties, and in particular
on the behavior of the fluctuating part of the spectrum.
For the latter, it is known that the NNSD obeys Gauss-
ian unitary ensemble (GUE) statistics, i.e., the levels show
quadratic repulsion [6,7]. Although the full GUE result
cannot be given in closed form, a simple representation of
a GUE-type distribution can be obtained from a 2X2 un-
itary matrix model and reads [8]:

32 o, —as?/m

pls)= )
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This estimate will be sufficient for our study. The setting
is now fixed. We start with a spectrum with level spacing
equal to unity. This would lead to a smooth harmonic
potential, which is indeed the dominant behavior of the
smooth potential related to the Riemann { zeros (up to
logarithmic corrections). Next, we perturb this spectrum
so as to obtain a GUE spacing distribution. We thus ob-
tain a set of levels and solve the inverse problem for the
potential using the dressing transformation. The result
for the reconstructed potentials are given in Fig. 1. A
blowup of the region around the origin is shown for three
different numbers of levels 500, 4000, and 32 000. The
building up of the fractality is clear.

This becomes even clearer when a qualitative estimate
of the fractal dimension is obtained. For this we use the
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FIG. 1. Blowup of the potential (around its minimum) recon-
structed with (a) N=500, (b) N=4000, and (c) N =32 000 levels.



51 COMMENTS

same box-counting techniques as in [1]. We start by con-
sidering a region over which the curve oscillates in
(roughly) the same way. Practically, this means that we
are limiting ourselves to x close to the origin. We choose
a rectangular region just high enough to include all the
oscillations of the potential and we normalize the axes so
that this rectangle becomes a square with side length
equal to 1. Next, we cut our square into n? elementary
squares of size dx =1/n and count the number P of
squares that contain a portion of the curve of the poten-
tial. Finally, we plot In(P dx) as a function of In(dx).
The typical result is a curve with the aspect of a hyper-
bolic tangent: constant values for very small or very
large dx and a region with roughly constant slope in be-
tween. The slope of this intermediate region is just 1—D
where D is the fractal dimension. Figure 2 contains the
results for all the numbers of levels examined from
N=250 to 32000. The steepening of the slope with in-
creasing N is evident, indicating that the fractal dimen-
sion grows. This is better seen in Fig. 3, where we show
the fractal dimension D as a function of InN. We remark
that, although a large number of levels has been used, no
convergence has been attained. Thus we cannot assign a
precise value to the fractal dimension of the potential; all
the more so, since the determination of D with the box-
counting technique somewhat depends on the size of the
region under analysis. Still, it is clear that the value 1.5
of the fractal dimension obtained by Wu and Sprung, al-
though fairly accurate for N=500, is far from the asymp-
totic (N — o) value.

Let us conclude with some general remarks concerning
the fractality of the potential related to a GUE level
statistics. A visual examination of the potential in Fig. 1
reveals no resemblance to a random walk (which is what
we would expect if the fractal dimension were indeed 1.5)
[9]. The potential looks more like white noise. This
model predicts the value D=2 for the fractal dimension.
Indeed, there are reasons to believe that the dimension is
that of the white noise.

From the general KdV theory the potential is given by

V=3a,ly,I*,
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FIG. 2. Box-counting estimate of the fractal dimension for
the potential reconstructed with N=250, 500, 1000, 2000, 4000,
8000, 16 000, and 32 000 levels.
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FIG. 3. Fractal dimension D as a function of the number N
of levels used in the recontruction of the potential (on a semilog-
arithmic scale).

where a, vary slowly with n and ¥, is the normalized
solution of KdV corresponding to the level €,,. This func-
tion has an oscillating behavior cos¢,(x) [where
dé,(x)/dx =V €,—V ] over a domain of size L, where
€, >V, and vanishes rapidly outside this domain. Thus
the oscillatory part of |, |? is of order cos2¢,(x)/L,. By
adding the contributions arising from an unperturbed
spectrum one obtains a smooth potential ¥ i.e., the oscil-
lations in the |¢,, |? cancel out. However, if the spectrum
is perturbed, for instance by a random component as in
the case treated above, the oscillatory part does not van-
ish but rather becomes, near the minimum ¥, of the po-
tential (with k, =V €, — V)

8V = ben 1 (2k )
—ern anos WX =@,

with @, independent of x. The summation can be ap-
proximated by an integral,

_ [ Be 1 opdnte)
8V—fkmin e ) Ty cosl2hx — (k)] =5 = dk .
In fact, since n(k)~kL (k), the factor
[1/L (k)][dn(k)/dk] is essentially constant. The in-

tegration limits k_;, and k_,, are related to the inherent
cutoffs of the problem: k2, is related to the Ae, for n
small and k2, to the total depth of the potential — V.
The factor 8¢, /A€, is the random factor with a zero
mean and a deviation which we may specify as a function
of k.

In order to estimate the fractal nature of the potential,
we compute the mean value over x of |8V]% and |8V"|? of
the square of the potential and of its derivative. We have

2
Se
— | k%dk
|8V'|2~f Ae
8v1® e "
Ae

In the present case of a constant deviation 8e/Ae€ the
(divergent) integrals are both dominated by k,,, and thus
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18V’ .2
|8V|2 max °*

Thus, qualitatively, |8V'|/|8V|~k,,, and the curve
V(x) fills the plane up to the smallest scale present,
1/k pax- In the limit N— oo, the fractal dimension is thus
D=2. This, of course, depends on the behavior of
8e/Ae. We expect, however, the result D=2 to be valid
not only for the GUE-like spectrum analyzed here but for
most constant-deviation perturbations of realistic spectra.
However, when this factor has a strong k dependence,
then the result can be different. For instance, if we
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choose 8e/Ae~1/k, we get the random-walk spectrum
proportional to 1/k? and though the integral for §V'2 is
still dominated by the cutoff at k_,,, it is now the other
cutoff at k_,, which dominates the integral for V2. We
thus have |8V’ /|8V] ~ (k yinkmax)'”? leading to a fractal
dimension of D=1.5.

Thus generalizing from our GUE results, we believe
that the one-dimensional potentials with a spectrum that
reproduces the imaginary part of the nontrivial zeros of
the Riemann § function has a white-noise aspect and a
fractal dimension equal to 2.
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